Transition to centrifuging granular flow in rotating tumblers: a modified Froude number

نویسندگان

  • Pengfei Chen
  • Julio M Ottino
  • Gabriel Juarez
  • Richard M Lueptow
چکیده

Centrifuging of granular material in a partially filled rotating circular tumbler occurs when particles are flung outward to form a ring of particles at the periphery of the tumbler rotating as a solid body. The critical rotation speed for centrifuging was studied experimentally in a quasi-two-dimensional tumbler as a function of particle diameter, tumbler fill fraction and interstitial fluid. A qualitative numerical study using the discrete element method was also conducted to obtain a better understanding of the impact of friction on the transition. Experimental results show that the critical rotational speed for dry systems is not affected by the particle diameter unless the fill fraction is above 75%, where endwall friction begins to play a significant role. The critical speed is proportional to (1−φ)(−1/4), where φ represents the tumbler fill fraction. The angle of repose, which represents inter-particle friction, also affects the transition to centrifuging. Finally, the interstitial fluid, or rather the density difference between the particles and the interstitial fluid, affects the measured critical speed. Correction terms for the critical rotational speed are proposed to more accurately characterize the transition to centrifuging for granular flow in rotating tumblers, resulting in a modified Froude number. 4 Authors to whom any correspondence should be addressed. 5 Current address: Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA. New Journal of Physics 13 (2011) 053055 1367-2630/11/053055+12$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsteady granular flows in a rotating tumbler.

The characteristics of steady granular flow in quasi-two-dimensional rotating tumblers have been thoroughly investigated and are fairly well understood. However, unsteady time-varying flow has not been studied in detail. The linear response of granular flow in quasi-two-dimensional rotating tumblers is presented for periodic forcing protocols via sinusoidal variation in the rotational speed of ...

متن کامل

Onset mechanism for granular axial band formation in rotating tumblers.

The mechanism for band formation of a granular mixture in long rotating tumblers is unresolved 70 years after the phenomenon was first observed. We explore the onset mechanism for axial segregation of a bidisperse mixture of particles of different sizes using the discrete element method. End walls initiate axial band formation via an axial flow due to friction at the end walls. The nonuniform d...

متن کامل

Rapid Granular Avalanches

Granular avalanches are one of the fundamental grain transport mechanisms in our natural environment and in many industrial grain-processing flows. In recent years significant progress has been made in describing the flow of granular avalanches over complex rigid topography. Often the fluid-like granular avalanches flow over a region of solid-like grains at which there may be erosion or deposit...

متن کامل

Subsurface granular flow in rotating tumblers: a detailed computational study.

To better understand the subsurface velocity field and flowing layer structure, we have performed a detailed numerical study using the discrete element method for the flow of monodisperse particles in half-full three-dimensional (3D) and quasi-2D rotating tumblers. Consistent with prior measurements at the surface, a region of high speed flow with axial components of velocity occurs near each e...

متن کامل

Granular axial band formation in rotating tumblers: a discrete element method study

The onset mechanism for band formation of a granular mixture in long rotating tumblers is still largely unresolved. We study this issue for axial segregation of binary mixtures having different size particles, using discrete element method simulations. Endwalls initiate axial segregation via an axial flow due to friction. The non-uniform distribution of axial velocity in the flow together with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011